
Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

En#ty	
 Authen#ca#on	
 and	

Session	
 Management	

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Jim Manico
@manicode

OWASP	
 Volunteer	

-  Global	
 OWASP	
 Board	
 Member	

-  OWASP	
 Cheat-­‐Sheet	
 Series,	
 Top	
 Ten	

Proac=ve	
 Controls,	
 OWASP	
 Java	
 Encoder	

and	
 HTML	
 Sani=zer	
 Project	
 Manager	
 and	

Contributor	

Secure-­‐Coding	
 Instructor/Author	

-  16	
 years	
 of	
 web-­‐based,	
 database-­‐driven	

soLware	
 development	
 and	
 analysis	

experience	

-  Working	
 on	
 a	
 Java	
 Security	
 book	
 with	

McGraw-­‐Hill	
 and	
 Oracle	
 Press!	

Kama'aina	
 Resident	
 of	
 Kauai,	
 Hawaii	

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Where are we going?

Authentication

Session Management

Transport Security

Password Storage

Multi-Factor Authentication

Forgot Password Workflow

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

What is Entity Authentication?

What is Authentication

! Verification that an entity is who it claims to be.

Difference between Authentication and Authorization

! Authorization is checking if an entity has privileges to perform a
function/action whilst Authentication is verification
of identification.

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

What is a Authentication Session?

A session identifier (ID) is supplied to the entity once they are
authenticated.

This is a random, unique & difficult to guess string.

! ASEIUHF849J283JE874GSJWOD2374DDEOFEFK93423H

It is used by the entity on any subsequent communication to identify
the source of the messages

It is valid for a finite period of time

We need a session ID as HTTP is stateless, it has no memory

The session ID is a “key” to a portion of memory on the server where
your individual data and/or state can be stored

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

1 Start HTTPS, deliver Login form

2 Submit Credentials

3 Create Session, Deliver session cookie to user

4 Do cool things

5 Potential Re-Authentiation

6 Absolute Timeout

7 Logoff or Idle Timeout

8 Invalidate Session hack to HTTP if desired

Entity Authentication Workflow

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Session Identifiers

Once a user has proven their identity, session management
functionality is employed

Each request sent to the server contains an identifier that the server
uses to associate requests to a specific authenticated user

The session ID is often all that is needed to prove authentication for
the rest of the session

A stolen active session ID allows an attacker to hijack a logged-in
account (but does not reveal the victims credentials)

Session ID’s are typically passed in a HTTP Cookie

In general, this is transparent to the developer and is handled by web
frameworks

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Authentication Dangers

Passwords
& PIN’s

! Database stolen revealing stored password data
! Brute force attack attempting many password

attempts for a specific account
! Simple password policy allowing faster guesses
! Password reuse: attacks on one website effect others

Username
Harvesting ! Registration page often makes this easy

Weak
"Forgot
Password”
feature

! Reset links sent over email

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

More Authentication Dangers

Weak
"Change
Password”
feature

! Does not require existing password
! Access control weakness allows reset of other users

password

Session
Management
Dangers

! Forcing victims to use known session ID’s
! Weak or predictable session ID’s

! Session Hijacking via XSS
! Session Hijacking via network sniffing

! Lack of session timeout, sessions that never expire

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Credential Security

Should require the user to provide proof of identity (re-authentication)

! Login

! Change Password

! Changing email address

! Significant or anomalous transactions

! Helps minimize CSRF and session hijacking attacks

Implement server-side enforcement of password syntax and
strength (i.e. length, character requirements, etc)

! Tough balance, overly strong policy is bad

! Do not allow users to choose commonly used passwords!

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Re-authentication Examples

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Login and Session Security

Send all credentials and session id’s over well configured HTTPS/
SSL/TLS

! Helps avoid session hijacking via network sniffing

Develop generic failed login messages that do not indicate whether
the user-id or password was incorrect

! Minimize username harvesting attack

Enforce account lockout after a pre-determined number of failed
login attempts

! Stops brute force threat

! Account lockout should trigger a notification sent to application
administrators and should require manual reset (via helpdesk)

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Cookie Options

The Set-Cookie header uses the following syntax:

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH;
domain=DOMAIN_NAME; secure; httponly;

Name

! The name of the cookie parameter

Value

! The parameter value

Expires

! The date on which to discard the cookie

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Cookie Security Defenses

Path The path under which all requests should receive the
cookie. “/” would indicate all paths on the server

Domain

The domain for which servers should receive the cookie
(tail match). For example, my.com would match all
hosts within that domain (www.my.com, test.my.com,
demo.my.com, etc.)

Secure Indicates that the cookie should only be sent over
HTTPS connections

HTTPOnly Helps ensure Javascript can not manipulate the cookie.
Good defense against XSS

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Additional Cookie Security Defenses

Avoid storing sensitive data in cookies

Any sensitive cookie data should be encrypted if not intended to be
viewed/tampered by the user. Persistent cookie data not intended
to be viewed by others should always be encrypted.

Cookie values susceptible to tampering should be protected with
an HMAC appended to the cookie, or a server-side hash of the
cookie contents (session variable)

Avoid using persistent cookies

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Additional Session Defences

Generate new session ID at login time

! To avoid session fixation threat

Session Timeout (sessions must “expire”)

! Idle Timeout due to inactivity

! Absolute Timeout

! Logout Functionality

! Will help minimize session hijacking threat

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Session Management Code Review Challenge

Challenge!

Examine the following pseudo code and
identify any issues with this session
management mechanism

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Pseudo Code: Session Creation,
Authentication, Session Validation

ROW CODE FIX? Y/N

1 BROWSER requests access to “Account Summary” from WEBSERVER

2 WEBSERVER checks whether the session is authenticated

3 IF session is authenticated:

4 Send “Account Summary” page to BROWSER

5 RETURN

6 IF session is NOT authenticated:

7 WEBSERVER grabs USERNAME posted by BROWSER

8 WEBSERVER asks DATABASE (“Select * from AuthTable where Username = ‘%s’”, USERNAME);

9 IF DATABASE returns no users:

10 WEBSERVER sends error message to BROWSER (“Invalid User Name %s”, USERNAME);

11 RETURN

12 ELSE

13 WEBSERVER grabs PASSWORD posted by BROWSER

14 For each user returned by DATABASE:

15 IF user’s password equals PASSWORD:

16 Authenticate session

17 Generate Session ID:

18 Increment previous Session ID by 1

19 Store Session ID

20 Add Session ID to user’s cookie

21 IF no users have a password equal to PASSWORD:

22 WEBSERVER sends error message to Browser (“Invalid password %s for username %s”, PASSWORD, USERNAME);

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Solution
1 BROWSER requests access to “Account Summary” from WEBSERVER

2 WEBSERVER checks whether the session is authenticated

3 IF session is authenticated and the user has access to “Account Summary”

4 Send “Account Summary” page to BROWSER

5 RETURN

6 IF session is NOT authenticated:

7 WEBSERVER grabs USERNAME and PASSWORD posted by BROWSER

8 WEBSERVER CREATES BCRYPT OF PASSWORD EVEN IF USERNAME DOES NOT EXIST

9 WEBSERVER asks DATABASE (“select * from AuthTable where Username = ‘%s’ and
PasswordBcrypt = ‘%s’”, USERNAME, BCRYPT OF PASSWORD);

10 IF DATABASE returns no users or more than one user:

11 WEBSERVER sends error message to BROWSER (“Invalid User Name or Password”);

12 RETURN

13 ELSE (DATABASE has returned exactly one user)

14 Authenticate session

15 Generate Session ID:

16 WEBSERVER generates secure random Session ID

17 Store Session ID

18 Add Session ID to user’s SECURE, HTTPONLY cookie

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Logout/Session Defences

Give users the option to log out of the application and make the
option available from every application page

The user’s session should be terminated using a method such as
session. abandon(), session. invalidate() during logout

JavaScript can be used to force logout during window close event

When clicked, the logout option should prevent the user from
requesting subsequent pages without re-authenticating to the
application

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Password Defenses

! Disable Browser Autocomplete
" <form AUTOCOMPLETE="off”>

" <input AUTOCOMPLETE="off”>

! Only send passwords over HTTPS POST
! Do not display passwords in browser

" Input type=password

! Store password quickly verifiable but not reversible
" Use a Salt

" SCRYPT/PBKDF2
" HMAC

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Password Storage in the Real World

1.  Do not limit the characters or length of user password
2.  Do not allow users to use commonly used passwords
3.  Use a user-specific salt
4.  Store passwords as an HMAC + good key management
5.  Use SCRYPT or PBKDF2 as an alternative

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

1) Do not limit the password strength!

•  Limiting passwords to protect against injection is
doomed to failure

•  Use proper encoding and other defenses instead
•  Very long passwords can cause DOS
•  Limit commonly used passwords!

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Password1!

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

2) Use a user-specific salt!

•  protect([salt] + [credential]);
•  Use a 32+ byte salt
•  Do not depend on hiding, splitting, or otherwise

obscuring the salt
•  Consider hiding, splitting or otherwise obscuring the

salt anyway as a extra layer of defense

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

3) Leverage keyed protection solution

•  HMAC-SHA-256([key], [salt] + [credential])
•  Protect this key as any private key using best practices
•  Store the key outside the credential store
•  Isolate this process outside of your application layer

Imposes difficult verification on
the attacker, only!

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

3) Leverage an adaptive one-way function

•  PBKDF2([salt] + [password], c=10,000,000);
•  PBKDF2 when FIPS certification or enterprise

support on many platforms is required
•  B/Scrypt where resisting any/all hardware

accelerated attacks is necessary but support isn’t

Imposes difficult verification on the
attacker and defender!

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Forgot Password Secure Design

Require identity questions
! Last name, account number, email, DOB

! Enforce lockout policy

Ask one or more good security questions
! https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet

Send the user a randomly generated token via out-of-band communication
! email, SMS or token

Verify code in same web session
! Enforce lockout policy

Change password
! Enforce password policy

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Federated Identity and SAML

XML-based identity management between different businesses

Centralized Authentication Authority

Single Sign On / Single Logout

Assertions and Subjects

Authentication Assertion Types

Attribute Assertion Types

Entitlement Assertion Types

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Multi Factor Authentication

There are 3 methods of identifying an individual

! Something you have – e.g. token, certificate, cell

! Something you are – e.g. biometrics

! Something you know – e.g. password.

For highly sensitive applications multifactor authentication can
be used

Financial services applications are moving towards “stronger
authentication”

Google/Facebook/World-Of-Warcraft support consumer-centric multi-
factor authentication

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Multi Factor Authentication

Google, Facebook, PayPal, Apple, AWS, Dropbox, Twitter
Blizzard's Battle.Net, Valve's Steam, Yahoo

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Basic	
 MFA	
 Considera#ons	

! Where	
 do	
 you	
 send	
 the	
 token?	

" Email	
 (worst)	

" SMS	
 (ok)	

" Mobile	
 na:ve	
 app	
 (good)	

" Mobile	
 na:ve	
 app,	
 push	
 no:fica:on	
 (great)	

" Dedicated	
 token	
 (ideal)	

" Printed	
 Tokens	
 (interes:ng)	

! How	
 do	
 you	
 handle	
 thick	
 clients?	

" Email	
 services,	
 for	
 example	

" Dedicated	
 and	
 strong	
 per-­‐app	
 passwords	

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Basic	
 MFA	
 Considera#ons	

! How	
 do	
 you	
 handle	
 unavailable	
 MFA	
 devices?	

" Printed	
 back-­‐up	
 codes	

" Fallback	
 mechanism	
 (like	
 email)	

" Call	
 in	
 center	

! How	
 do	
 you	
 handle	
 mobile	
 apps?	

" When	
 is	
 MFA	
 not	
 useful	
 in	
 mobile	
 app	
 scenarios?	

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Authentication Control Flow Flaws

 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Does	
 this	
 code	
 look	
 safe	
 to	
 you?	

3
4

String username = session.getAttribute(“user”);
if (username == null)
{

 response.sendRedirect(“Access Denied”);
}

Business Logic Processing

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Authentication Control Flow Flaws

What	
 if	
 the	
 execu:on	
 did	
 not	
 stop	
 here?	

3
5

String username = session.getAttribute(“user”);
if (username == null)
{

 response.sendRedirect(“Access Denied”);
}

Business Logic Processing

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Control Flow Flaws

	

! Business	
 logic	
 would	
 execute	
 for	
 an	
 unauthen=cated	

request!	

String username = session.getAttribute(“user”);
if (username == null)
{

 response.sendRedirect(“Access Denied”);
}

Business Logic Processing This is not protected

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Control Flow Flaws

! The	
 execu:on	
 flow	
 does	
 not	
 stop	
 aMer	
 the	

response.sendRedirect	
 call	

! 	
 En:re	
 page	
 is	
 processed	
 and	
 then	
 the	
 user	
 is	

redirected	
 to	
 error	
 page	

! 	
 Thus,	
 the	
 business	
 logic	
 remains	
 unprotected	

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Return after redirecting!

! Security Measures:
§  Terminate the execution flow after redirection call.

String username = session.getAttribute(“user”);
if (username == null)
{

 response.sendRedirect(“Access Denied”);
 return;

}

Business Logic Processing

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Other Authentication Considerations

! Do password hashing IN THE BROWSER to prevent
password theft even when SSL is compromised

! List all logins with login time, logout time, IP address or
more

! Provide login auditing in a READ ONLY way
! Provide capability to block logins from certain geographic

regions
! Provide capability to block logins during certain times
! Do not allow a password reset workflow that could be

compromised if a customers email was popped
! Disallow commonly used passwords, even ones that fit a

strong password policy (like Password1!)

Eoin Keary & Jim Manico Copyright 2014 – all rights reserved.

Summary

Authentication

Session Management

Transport Security

Password Storage

Multi-Factor Authentication

Forgot Password Workflow

